14 research outputs found

    Semantic Interleaving Global Channel Attention for Multilabel Remote Sensing Image Classification

    Full text link
    Multi-Label Remote Sensing Image Classification (MLRSIC) has received increasing research interest. Taking the cooccurrence relationship of multiple labels as additional information helps to improve the performance of this task. Current methods focus on using it to constrain the final feature output of a Convolutional Neural Network (CNN). On the one hand, these methods do not make full use of label correlation to form feature representation. On the other hand, they increase the label noise sensitivity of the system, resulting in poor robustness. In this paper, a novel method called Semantic Interleaving Global Channel Attention (SIGNA) is proposed for MLRSIC. First, the label co-occurrence graph is obtained according to the statistical information of the data set. The label co-occurrence graph is used as the input of the Graph Neural Network (GNN) to generate optimal feature representations. Then, the semantic features and visual features are interleaved, to guide the feature expression of the image from the original feature space to the semantic feature space with embedded label relations. SIGNA triggers global attention of feature maps channels in a new semantic feature space to extract more important visual features. Multihead SIGNA based feature adaptive weighting networks are proposed to act on any layer of CNN in a plug-and-play manner. For remote sensing images, better classification performance can be achieved by inserting CNN into the shallow layer. We conduct extensive experimental comparisons on three data sets: UCM data set, AID data set, and DFC15 data set. Experimental results demonstrate that the proposed SIGNA achieves superior classification performance compared to state-of-the-art (SOTA) methods. It is worth mentioning that the codes of this paper will be open to the community for reproducibility research. Our codes are available at https://github.com/kyle-one/SIGNA.Comment: 14 pages, 13 figure

    Raffinose degradation-related gene GhAGAL3 was screened out responding to salinity stress through expression patterns of GhAGALs family genes

    Get PDF
    A-galactosidases (AGALs), the oligosaccharide (RFO) catabolic genes of the raffinose family, play crucial roles in plant growth and development and in adversity stress. They can break down the non-reducing terminal galactose residues of glycolipids and sugar chains. In this study, the whole genome of AGALs was analyzed. Bioinformatics analysis was conducted to analyze members of the AGAL family in Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, and Gossypium raimondii. Meanwhile, RT-qPCR was carried out to analyze the expression patterns of AGAL family members in different tissues of terrestrial cotton. It was found that a series of environmental factors stimulated the expression of the GhAGAL3 gene. The function of GhAGAL3 was verified through virus-induced gene silencing (VIGS). As a result, GhAGAL3 gene silencing resulted in milder wilting of seedlings than the controls, and a significant increase in the raffinose content in cotton, indicating that GhAGAL3 responded to NaCl stress. The increase in raffinose content improved the tolerance of cotton. Findings in this study lay an important foundation for further research on the role of the GhAGAL3 gene family in the molecular mechanism of abiotic stress resistance in cotton

    Characterization and gene expression patterns analysis implies BSK family genes respond to salinity stress in cotton

    Get PDF
    Identification, evolution, and expression patterns of BSK (BR signaling kinase) family genes revealed that BSKs participated in the response of cotton to abiotic stress and maintained the growth of cotton in extreme environment. The steroidal hormone brassinosteroids (BR) play important roles in different plant biological processes. This study focused on BSK which were downstream regulatory element of BR, in order to help to decipher the functions of BSKs genes from cotton on growth development and responses to abiotic stresses and lean the evolutionary relationship of cotton BSKs. BSKs are a class of plant-specific receptor-like cytoplasmic kinases involved in BR signal transduction. In this study, bioinformatics methods were used to identify the cotton BSKs gene family at the cotton genome level, and the gene structure, promoter elements, protein structure and properties, gene expression patterns and candidate interacting proteins were analyzed. In the present study, a total of 152 BSKs were identified by a genome-wide search in four cotton species and other 11 plant species, and phylogenetic analysis revealed three evolutionary clades. It was identified that BSKs contain typical PKc and TPR domains, the N-terminus is composed of extended chains and helical structures. Cotton BSKs genes show different expression patterns in different tissues and organs. The gene promoter contains numerous cis-acting elements induced by hormones and abiotic stress, the hormone ABA and Cold-inducing related elements have the highest count, indicating that cotton BSK genes may be regulated by various hormones at different growth stages and involved in the response regulation of cotton to various stresses. The expression analysis of BSKs in cotton showed that the expression levels of GhBSK06, GhBSK10, GhBSK21 and GhBSK24 were significantly increased with salt-inducing. This study is helpful to analyze the function of cotton BSKs genes in growth and development and in response to stress

    GhLCYε-3 characterized as a lycopene cyclase gene responding to drought stress in cotton

    No full text
    Drought stress significantly affects crop productivity. Carotenoids are essential photosynthetic pigment for plants, bacteria, and algae, with signaling and antioxidant functions. Lutein is a crucial branch product in the carotenoid synthesis pathway, which effectively improves the stress tolerance of higher plants. lycopene cyclase, a central enzyme for lutein synthesis, holds great significance in regulating lutein production. This research establishes a correlation between lutein content and stress resistance by measuring the drought resistance and lutein content of various cotton materials. To identify which crucial genes are associated with lutein, the lycopene cyclase family (LCYs) was analyzed. The research found that LCYs form a highly conserved family divided into two subfamilies, LCY-ε (lycopene ε-cyclase) and LCY-β (lycopene β-cyclase). Most members of the LCY family contain photoresponsive elements and abscisic acid elements. qRT-PCR demonstrates showed that most genes responded positively to drought stress, and GhLCYε-3 was expressed significantly differently under drought stress. Virus-induced gene silencing (VIGS) assay showed that the content of GhLCYε-3 was significantly increased with MDA and PRO, and the contents of chlorophyll and lutein were significantly decreased in pYL156 plants. The decrease in GhLCYε-3 expression is speculated to lead to reduced lutein content in vivo, resulting in the accumulation of reactive oxygen species (ROS) and decreased drought tolerance. This research enriched the understanding of LCY gene family and lutein function, and provided a new reference for cotton planting in arid areas. Synopsis: Lycopene cyclase plays an important role in enhancing the ability of scavenging ROS and drought resistance of plants

    GhCYS2 governs the tolerance against cadmium stress by regulating cell viability and photosynthesis in cotton

    No full text
    Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes

    A flavonol synthase (FLS) gene, GhFLS1, was screened out increasing salt resistance in cotton

    No full text
    Abstract Background Flavonols play important roles in antioxidation and anticancer activities, longevity, and cardiovascular protection. Flavonol synthase (FLS) is a key enzyme for flavonol synthesis. Result Phenotypic, transcriptional and metabolic data were analyzed, which showed that there was a close relationship between salt stress and flavonoids, and flavonols were significantly upregulated under salt stress. Nine, seven, four, and four FLS genes were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and Gossypium raimondii, respectively. The results of subcellular localization showed that FLS existed in the nucleus and cytoplasmic. Through phylogenetic analysis, 24 FLS genes were divided into three subfamilies. The results of the RNA sequencing showed that the expression of GhFLS genes was mainly induced by salt, drought, low temperature, and heat stress. GhFLS promoter mainly comprised plant hormone response elements and abiotic stress elements, indicating that the GhFLS gene may play a key role in abiotic stress response. The proline contents of pYL156:GhFLS1 was reduced significantly compared to pYL156 under salt stress, thereby reducing the resistance of cotton to salt stress. Conclusion This study will lay a foundation for further study on the antioxidant regulation mechanism of the FLS gene under abiotic stress

    Combined transcriptomic and metabolomic analyses elucidate key salt-responsive biomarkers to regulate salt tolerance in cotton

    No full text
    Abstract Background Cotton is an important industrial crop and a pioneer crop for saline-alkali land restoration. However, the molecular mechanism underlying the cotton response to salt is not completely understood. Methods Here, we used metabolome data and transcriptome data to analyze the salt tolerance regulatory network of cotton and metabolic biomarkers. Results In this study, cotton was stressed at 400 m M NaCl for 0 h, 3 h, 24 h and 48 h. NaCl interfered with cotton gene expression, altered metabolite contents and affected plant growth. Metabolome analysis showed that NaCl stress increased the contents of amino acids, sugars and ABA, decreased the amount of vitamin and terpenoids. K-means cluster analysis of differentially expressed genes showed that the continuously up-regulated genes were mainly enriched in metabolic pathways such as flavonoid biosynthesis and amino acid biosynthesis. Conclusion The four metabolites of cysteine (Cys), ABA(Abscisic acid), turanose, and isopentenyladenine-7-N-glucoside (IP7G) were consistently up-regulated under salt stress, which may indicate that they are potential candidates for cotton under salt stress biomarkers. Combined transcriptome and metabolome analysis revealed accumulation of cysteine, ABA, isopentenyladenine-7-N-glucoside and turanose were important for salt tolerance in cotton mechanism. These results will provide some metabolic insights and key metabolite biomarkers for salt stress tolerance, which may help to understanding of the metabolite response to salt stress in cotton and develop a foundation for cotton to grow better in saline soil

    Additional file 1 of GhNFYA16 was functionally observed positively responding to salt stress by genome-wide identification of NFYA gene family in cotton

    No full text
    Additional File 1: Figure S1 Distribution of NFYA family members in 11 species. Figure S2 Analysis of Non-synonymous (Ka) to Synonymous (Ks) ratio. Table S1 NFYA family genes correspond to eleven species gene renames. Table S2 Analysis of the physical and chemical properties of NFYA genes in G.hirsutum
    corecore